
6.884
Spring 2020 Computational Sensorimotor Learning HW 2

DUE DATE: 04/09/2020 (by 2.30pm ET)

Introduction

0.1 Overview

In HW 1, we used model-free reinforcement learning to train agents for reaching. Alternatively, agents can also be
trained via self-supervision to learn a model of the world, and then plan with this learned model. Broadly, there are
two types of models: forward and inverse model. The forward model predicts future state given current state and
action. The inverse model predicts action given the current state and the desired future state. In this HW, we will
implement learning of forward and inverse models.

0.2 Pushing Environment details

The action space is four-dimensional and consists of the initial and the final end-effector positions of the robot’s arm
tip. The state space consists of two-dimensional position of the object.

We have provided a pushing environment contained in push-env.py. You have to use the current object pose and
the sampled goal object pose to perform a push with your learned inverse/forward model, and compute the distance
between the final object pose after the push and the goal object pose. We have provided you with some starter
code and you need to complete the function plan-inverse-model (in push-env.py) to sample different goals, and
perform the push with your learned model.

0.3 Dataset

While typically learning requires data-collection, we have simplified this process and provided you with a pushing

dataset consisting of 70k pushes for training and 70k pushes for testing. Another helper file dataset.py, creates a
torch dataset object for reading the pushing dataset. Note that you are free to use a library of your choice and not
necessarily pyTorch.

1 Problem 1: Learning Inverse Model

In this problem, we will learn an inverse model for pushing using the pushing dataset. We will use the learned
inverse model for pushing an object.

Deliverables:

• Source code used for training inverse model (20 pts).

• A detailed description of inverse model architecture and loss function used for training (5 pts).

1



• Training plot showing loss as a function of time. Final train and test loss (5 pts).

• Video showing a ground truth push and the corresponding push performed by the inverse model. Report the
distance between the final object pose after the push and the goal object pose. Sample 10 such pushes (20 pts).

2 Problem 2: Learning forward model

In this problem, we will learn a forward model for pushing using the pushing dataset. We will use the learned
forward model to plan for pushing an object using Cross Entropy Method (CEM).

NOTE: For CEM algorithm, we recommend sampling push angle and push length and then using the push angle
and push length to calculate the initial and the final end-effector positions of the robot’s arm tip. You can look at
sample-push function in push-env.py.

Deliverables:

• Source code used for training forward model and for planning using CEM (20 pts).

• A detailed description of forward model architecture and loss function used for training (5 pts).

• Training plot showing loss as a function of time. Final train and test loss (5 pts).

• Video showing a ground truth push and the corresponding push performed by the forward model. Report the
distance between the final object pose after the push and the goal object pose. Sample 10 such pushes (20 pts).

3 Problem 3: Extrapolating with learned model

In the last two problems, we learned to model the primitive skill of pushing. Ideally, we would like to use the pushing
skill to perform more complex tasks. However, the learned models might not succeed in complex tasks due to the
change in the data distribution. In this problem, we will test the ability of the learned models to extrapolate to
multi-step pushing. You need to complete the function plan-inverse-model-extrapolate (in push-env.py) to
sample different goals, and perform the two-step push with your learned model.

Deliverables:

• Video showing a ground truth two-step push and the corresponding two-step push performed by the inverse
model. Compute the distance between the final object pose after the push and the goal object pose. Sample
10 such pushes (20 pts).

• Video showing a ground truth two-step push and the corresponding two-step push performed by the forward
model. Report the distance between the final object pose after the push and the goal object pose. Sample 10
such pushes (20 pts).

• Comment on how the forward and the inverse model extrapolate and how they compare (10 pts).

4 Submission Instructions

The deliverables mentioned above should be submitted on gradescope. Please also submit your code (along with the
instructions on how to run it) in a zip file on gradescope.

2

https://en.wikipedia.org/wiki/Cross-entropy_method

	Overview
	Pushing Environment details
	Dataset
	Problem 1: Learning Inverse Model
	Problem 2: Learning forward model
	Problem 3: Extrapolating with learned model
	Submission Instructions

